Musculin and TCF21 coordinate the maintenance of myogenic regulatory factor expression levels during mouse craniofacial development.

نویسندگان

  • Natalia Moncaut
  • Joe W Cross
  • Christine Siligan
  • Annette Keith
  • Kevin Taylor
  • Peter W J Rigby
  • Jaime J Carvajal
چکیده

The specification of the skeletal muscle lineage during craniofacial development is dependent on the activity of MYF5 and MYOD, two members of the myogenic regulatory factor family. In the absence of MYF5 or MYOD there is not an overt muscle phenotype, whereas in the double Myf5;MyoD knockout branchiomeric myogenic precursors fail to be specified and skeletal muscle is not formed. The transcriptional regulation of Myf5 is controlled by a multitude of regulatory elements acting at different times and anatomical locations, with at least five operating in the branchial arches. By contrast, only two enhancers have been implicated in the regulation of MyoD. In this work, we characterize an enhancer element that drives Myf5 expression in the branchial arches from 9.5 days post-coitum and show that its activity in the context of the entire locus is dependent on two highly conserved E-boxes. These binding sites are required in a subset of Myf5-expressing cells including both progenitors and those which have entered the myogenic pathway. The correct levels of expression of Myf5 and MyoD result from activation by musculin and TCF21 through direct binding to specific enhancers. Consistent with this, we show that in the absence of musculin the timing of activation of Myf5 and MyoD is not affected but the expression levels are significantly reduced. Importantly, normal levels of Myf5 expression are restored at later stages, which might explain the absence of particular muscles in the Msc;Tcf21 double-knockout mice.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

musculin: a murine basic helix-loop-helix transcription factor gene expressed in embryonic skeletal muscle

We describe the embryonic expression of musculin, a new murine member of the bHLH family of transcription factors. Musculin protein is closely related to human ABF-1, which is expressed in activated B cells, and to epicardin/capsulin/Pod-1, which is expressed in branchial myoblasts, visceral and urogenital mesoderm and epicardium. In situ hybridisation revealed musculin expression in embryos wa...

متن کامل

Effects of in ovo Injection of Zinc Acetate on some Gene Expression Associated with Embryonic Growth and Development, and with Growth and Carcass Characteristics of the Resultant Chicks

This study was conducted in two steps to determine the effects of in ovo injection of zinc acetate (ZAC) on some gene expression associated with embryonic growth and development, and with growth and carcass characteristics of the resultant chicks. In the first step the effect of in ovo injectionofZAC on the expression of insulin-like growth factors (IGFs:IGF-I and IGF-I), myog...

متن کامل

Potential roles of 5´ UTR and 3´ UTR regions in post-trans-criptional regulation of mouse Oct4 gene in BMSC and P19 cells

Objective(s):OCT4 is a transcription factor required for pluripotency during early embryogenesis and the maintenance of identity of embryonic stem cells and pluripotent cells. Therefore, the effective expression regulation of this gene is highly critical. UTR regions are of great significance to gene regulation. In this study, we aimed to investigate the potential regulatory role played by 5´UT...

متن کامل

Six1 and Six4 homeoproteins are required for Pax3 and Mrf expression during myogenesis in the mouse embryo.

In mammals, Six5, Six4 and Six1 genes are co-expressed during mouse myogenesis. Six4 and Six5 single knockout (KO) mice have no developmental defects, while Six1 KO mice die at birth and show multiple organ developmental defects. We have generated Six1Six4 double KO mice and show an aggravation of the phenotype previously reported for the single Six1 KO. Six1Six4 double KO mice are characterize...

متن کامل

Divergent and conserved roles of Dll1 signaling in development of craniofacial and trunk muscle.

Craniofacial and trunk skeletal muscles are evolutionarily distinct and derive from cranial and somitic mesoderm, respectively. Different regulatory hierarchies act upstream of myogenic regulatory factors in cranial and somitic mesoderm, but the same core regulatory network - MyoD, Myf5 and Mrf4 - executes the myogenic differentiation program. Notch signaling controls self-renewal of myogenic p...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Development

دوره 139 5  شماره 

صفحات  -

تاریخ انتشار 2012